Jorge Carlos Fernández Francés

Tesla finalmente admite aplicaciones de terceros con API oficial

Tesla, el principal fabricante de automóviles eléctricos, finalmente publicó su documentación API oficial para admitir aplicaciones de terceros después de años de depender de una API no oficial e indocumentada. Este es un gran paso para la empresa, que se ha mostrado reacia a abrir su plataforma de software a desarrolladores externos.

API de flota
Actualmente centrada en la gestión de flotas, la API oficial permite que aplicaciones de terceros envíen comandos y reciban datos de los vehículos Tesla , como bloquear y desbloquear puertas, tocar la bocina, comprobar el estado de la batería y más. Estas son las mismas funciones disponibles a través de la aplicación Tesla, pero ahora otras aplicaciones pueden acceder a ellas.

Tesla dice que todas las aplicaciones de terceros tendrán que usar la nueva API a partir del próximo año, ya que la antigua API REST será descontinuada. La compañía también proporcionó un proceso para que los desarrolladores de aplicaciones se registren y obtengan la autorización de Tesla y sus clientes.

Según Electrek , un sitio web que cubre noticias de Tesla, el lanzamiento oficial de la API puede haber sido provocado por el reciente acuerdo de Tesla con Hertz, el gigante del alquiler de automóviles que encargó 100.000 vehículos Tesla para su flota. Es posible que Tesla haya tenido que crear una API segura y confiable para que Hertz administre su gran cantidad de autos eléctricos.


El lanzamiento oficial de la API también es una buena noticia para los desarrolladores de aplicaciones de terceros existentes y potenciales que crean aplicaciones para propietarios de Tesla utilizando la API no oficial. Estas aplicaciones incluyen integración de reloj inteligente, control por voz, visor de cámara para tablero, planificador de rutas y más. Algunas de estas aplicaciones se han vuelto muy populares entre los fanáticos de Tesla, pero también corren el riesgo de ser bloqueadas o dañadas por las actualizaciones de software de Tesla.

Adelante
Ahora que Tesla ha publicado su documentación API oficial, estas aplicaciones pueden funcionar con mayor confianza y estabilidad. También pueden esperar más apoyo y comentarios de Tesla y sus clientes. Esto también podría alentar a más desarrolladores a crear aplicaciones innovadoras y prácticas para los vehículos Tesla.

Sin embargo, la API oficial aún necesita mejorarse en cuanto a lo que puede hacer. No permite que aplicaciones de terceros accedan o controlen la pantalla táctil gigante o el sistema de información y entretenimiento de los vehículos Tesla. Tampoco permite que se ejecuten aplicaciones de terceros dentro del coche, ya que Tesla prefiere controlar la experiencia del usuario y la seguridad de su software.

Tesla ha insinuado anteriormente que lanzará un kit de desarrollo de software (SDK) o permitirá la duplicación de aplicaciones desde el teléfono a la consola central, pero aún no ha cumplido con esos planes. Muchos propietarios de Tesla también han solicitado funciones como CarPlay de Apple o Android Auto, que permiten a los usuarios conectar sus teléfonos y usar sus aplicaciones favoritas en la pantalla del automóvil. Sin embargo, Tesla tampoco ha mostrado ningún interés en adoptar esos servicios.


Por lo tanto, si bien el lanzamiento oficial de la API es un paso bienvenido para el ecosistema de aplicaciones de terceros, todavía está lejos de crear una «tienda de aplicaciones» completa para los vehículos Tesla. Queda por ver si Tesla alguna vez abrirá más su plataforma de software o la mantendrá cerrada y propietaria.

Jorge Carlos Fernández Francés

Diseños de automóviles para conducir en invierno sobre un modelo Lego

¡Viene el invierno!

Una de las principales dificultades que enfrentan los conductores durante el clima frío es la pérdida de tracción de las ruedas de los vehículos, debido a las superficies heladas y resbaladizas, lo que a menudo puede provocar que los automóviles se atasquen o se salgan de la carretera.

Un vídeo informativo publicado en YouTube por Brick Technology explica las razones y las soluciones para contrarrestar este problema destacando varios diseños de automóviles que utilizan vehículos Lego. El creador del vídeo ha emulado tales condiciones utilizando un panel de vidrio, que puede elevarse para mostrar diferentes ángulos de inclinación, y soluciones jabonosas para explicar a los espectadores los problemas que enfrentan debido a esto.

Papel de la tracción

El vídeo comienza con un vehículo con tracción trasera que lucha por subir una ligera pendiente (5 por ciento) con la mayor parte de su peso adicional en el medio. La situación cambió cuando el peso se trasladó al eje trasero, lo que proporcionó más tracción a las ruedas traseras, permitiendo que el vehículo exacto subiera por la superficie con facilidad. Un pequeño truco aquí es que agregar más peso a esas ruedas puede dar como resultado una mayor tracción dependiendo de si su modelo tiene eje delantero o trasero.

Aumentar el ángulo de reclinación al siete por ciento da como resultado que el vehículo se cale exactamente, ya que los neumáticos individuales en la parte trasera no reciben potencia de acuerdo con la tracción disponible para cada uno de ellos. El video muestra que agregar un sistema de bloqueo del diferencial (que garantiza que se envíe la máxima capacidad a la rueda, lo que genera más tracción) a medida que la inclinación aumenta al 8 por ciento, agregar más peso a la parte trasera del vehículo con el bloqueo del diferencial en su lugar no el truco.


Ahora, a medida que la situación se vuelve más exigente en una pendiente del 10 por ciento, la adición de un sistema básico de tracción total (garantiza que todas las ruedas del vehículo tengan acceso a la potencia producida por el motor), que esencialmente aumentó el área de contacto de el coche con el suelo, lo que le permite subir a la superficie con facilidad.

A medida que la pendiente aumenta al 14 por ciento, incluso el vehículo con tracción total tiene dificultades para salir adelante. Luego, el usuario agrega un sistema con relaciones de transmisión bajas para complementar el torque disponible, pero no logra obtener suficiente tracción para completar el recorrido. Más tarde, agregar más ruedas, cuatro en lugar de dos, al eje trasero es suficiente.

En condiciones extremas, una situación de inclinación del 15 por ciento justifica que los vehículos tengan un eje adicional con cuatro ruedas más. El vehículo ahora tiene diez ruedas para proporcionar tracción en dicha superficie, lo que a su vez le ayuda a completar el viaje.

A medida que avanza el vídeo, una inclinación de 17 grados exige un motor más potente y otro juego de ejes en la parte delantera con dos neumáticos más. Agregue más peso en todos los ejes. Pero el esfuerzo sigue siendo en vano.

Métodos alternativos

El vídeo continúa empleando otros medios para aumentar la superficie de contacto del vehículo con el suelo. El uso de placas con orugas como los tanques de batalla no funciona con una inclinación del 17 por ciento. Una composición que imita a una criatura de seis patas con un material de tela adherido a sus patas finalmente empuja el sistema colina arriba.


Con una inclinación del 40 por ciento, el sistema requirió dos patas más, y las ocho cápsulas ahora obtuvieron una mayor superficie para proporcionar agarre adicional. En la etapa final del experimento, con una enorme inclinación del 60 por ciento, el creador prueba un sistema de cuatro ruedas con dos ventiladores conectados para proporcionar empuje durante la subida. Incapaz de hacerlo, el sistema más antiguo que presentaba el diseño de ocho cápsulas, combinado con un solo ventilador, finalmente comenzó a funcionar hasta que una de las patas se rompió durante las operaciones. El sistema podría haberse desacelerado hasta la cima de la pendiente del 60 por ciento.

Como suele observarse, el vídeo no menciona el uso de neumáticos y cadenas para la nieve específicos para el invierno para aumentar el agarre de los vehículos. Estos métodos ayudan a aumentar la tracción proporcionada por las ruedas y son fáciles de instalar y pueden emplearse en todo tipo de vehículos.

Jorge Carlos Fernández Francés

Conduciendo hacia el futuro: innovaciones que están remodelando la industria automotriz

Los avances tecnológicos en la industria automotriz son cada vez más innovadores. Además de aumentar la seguridad, la tecnología automotriz puede eliminar molestias e introducir nuevos niveles de comodidad para el consumidor con dispositivos fáciles de usar que funcionan de manera rápida y efectiva.

Los arrancadores son un departamento de la tecnología automotriz que está logrando nuevos avances. Dado que las baterías de los vehículos fallan inesperadamente, es esencial tener arrancadores ingeniosos a la mano en todo momento que puedan reducir el estrés durante emergencias en la carretera, proteger contra componentes electrónicos y evitar la dependencia de extraños con características infalibles.


CAROSS USA, por ejemplo, está revolucionando la industria del arranque con su tecnología de conexión inteligente. Como orgulloso titular de la patente estadounidense para abrazaderas no polarizadas, CAROSS está cambiando el juego con seguridad, facilidad de conexión y carga sin complicaciones. Al brindar tranquilidad sin chispas y sin daños a los componentes electrónicos del vehículo o a las personas, la sujeción única es la nueva tecnología automotriz prometedora en la industria.

Mientras que las abrazaderas rojas y negras tradicionales requieren la abrazadera roja al borne positivo y la abrazadera negra al borne negativo, CAROSS ofrece abrazaderas verdes de alta resistencia que funcionan independientemente del borne de batería al que se conecte cada abrazadera.

La marca ofrece una potente tecnología de carga rápida bidireccional plug-and-play de 65 W, una pantalla inteligente de 3 ″ y un botón SOS dedicado que activa la señal roja intermitente. Si el técnico carga la unidad en una hora, también puede cargar computadoras portátiles, teléfonos, drones, cámaras y otros dispositivos con un puerto de carga USB-C.

Ser un miembro orgulloso de SEMA y exponer en el stand n.° 39173 en la feria SEMA en Las Vegas del 31 de octubre al 31 de noviembre. 3, los consumidores ansiosos pueden pasar a ver al equipo de CAROSS en persona.

Los modelos de arranque auxiliar más avanzados de CAROSS y los infladores de aire con patente pendiente también se lanzarán en el cuarto trimestre. Visite el sitio web para ver los nuevos y emocionantes modelos Q4 repletos de las últimas innovaciones.

Jorge Carlos Fernández Francés

Este motor de coche de 2 litros puede funcionar íntegramente con hidrógeno

Mientras el mundo se apresura a hacer la transición a combustibles verdes para lograr la neutralidad de carbono, promover fuentes de energía que utilicen hidrógeno como combustible limpio es una estrategia para avanzar en el proceso. Ahora, investigadores de Corea del Sur han desarrollado una nueva tecnología para un motor de hidrógeno para automóviles de pasajeros que promete hacerlo más viable para la producción en masa.

El tren motriz desarrollado por investigadores del Instituto Coreano de Maquinaria y Materiales (KIMM) y el Laboratorio de Investigación de Motores sin Carbono de Hyundai-Kia Motor Company (HMC) es un motor de hidrógeno de inyección directa de 2 litros que funciona enteramente con combustible de hidrógeno.

El equipo afirma que la nueva «tecnología de motor de hidrógeno desarrollada es una tecnología instantánea y económica que puede ayudar a reemplazar los combustibles fósiles, que actualmente se utilizan como principal fuente de energía para los vehículos, con combustibles de hidrógeno libres de carbono», dijo Young Choi. investigador principal y parte del Departamento de Investigación de Energía de Movilidad de KIMM, en un comunicado .

¿Tiene futuro el hidrógeno como fuente de energía limpia?

Una torre todo en uno alimentada por energía solar hace realidad el combustible para aviones sin emisiones de carbono
La FAA advierte sobre posible defecto en los motores del Boeing 777
Este motor de coche de 2 litros puede funcionar íntegramente con hidrógeno Motor de hidrógeno de inyección directa de 2 litros
Instituto Coreano de Maquinaria y Materiales

Mayor eficiencia y rendimiento

En los sistemas de propulsión convencionales de combustión interna que utilizan combustible de hidrógeno, conocido como motor de inyección de puerto, este quema hidrógeno como combustible después de mezclarlo con aire inyectando la potencia a través de un puerto de inhalación superior en lugar del cilindro.

Debido a esta arquitectura, la cantidad de aire que ingresa a la cámara de combustión disminuye debido al espacio que ocupa el combustible de hidrógeno, el cual está presente en estado gaseoso. Esto da como resultado una menor eficiencia de combustible y un peor rendimiento del motor porque el combustible de hidrógeno y el aire son contraproducentes.

Para remediar esto, los investigadores inyectaron hidrógeno a alta presión directamente en la cámara de combustión. «Este método utiliza una combustión de premezcla que permite una combustión ultra pobre y tiene la ventaja de no tener pérdidas por bombeo porque la salida se controla por la cantidad de combustible inyectado sin estrangular el aire de admisión», dice el estudio. Además, como no existe gas hidrógeno en el tubo de admisión, no se produce un retroceso, lo cual es una característica común en los motores impulsados ​​por hidrógeno.

Jorge Carlos Fernández Francés

Los vehículos eléctricos de nueva generación de Mercedes ofrecen 400 kilómetros de autonomía en 15 minutos

Ofreciendo un vistazo al futuro de sus vehículos totalmente eléctricos, Mercedes Benz ha presentado su Concept CLA Class, que promete ofrecer más autonomía que un Tesla Model 3 con 446 millas (750 kilómetros).

La medida se produce cuando los fabricantes de automóviles alemanes como BMW, Mercedes Benz y Audi están tratando de ponerse al día con Tesla y las empresas asiáticas de vehículos eléctricos de nueva era en el espacio automotriz de vehículos eléctricos de rápido desarrollo. Las empresas mostraron recientemente sus visiones de futuro en el Salón del Automóvil de Movilidad IAA de Múnich.

Según la firma, el Concept CLA Class servirá como ejemplo de su nuevo segmento totalmente eléctrico de vehículos de nivel básico, con cuatro nuevos modelos en la gama: un cupé de cuatro puertas, un Shooting Brake y dos SUV.

Mercedes-Benz lanza un asistente de voz con tecnología ChatGPT en sus automóviles

Con la nueva gama, el fabricante de automóviles pretende reforzar su compromiso de lograr la neutralidad neta de carbono a lo largo de toda la cadena de valor en su flota de vehículos nuevos en 2039.

Propuesta eficiente

La nueva línea de vehículos de la firma se basará en su nueva Arquitectura Modular Mercedes-Benz (MMA). Esta plataforma eléctrica presenta tecnología vista en su concepto Vision EQXX que promete una mayor eficiencia.

El vehículo cuenta con una máquina síncrona de excitación permanente de 175 kW con una transmisión de dos velocidades y un peso total de menos de 110 kilogramos. El tren motriz también presenta una alta eficiencia energética de hasta el 93 por ciento desde la batería hasta el volante en conducción de larga distancia.


Como resultado, el vehículo cuenta con una autonomía WLTP de más de 466 millas (750 km) y un consumo de aproximadamente 5,2 mi/kWh (12 kWh/100 km) será una marca registrada de la nueva generación de transmisiones.

Mercedes-Benz ofrecerá a los clientes la opción de elegir entre dos tipos de baterías. Las variantes de gama alta contarán con un diseño de ánodo con contenido de óxido de silicio para una excelente densidad de energía. Por otro lado, las versiones de entrada utilizarán fosfato de litio-hierro.

Los vehículos eléctricos de nueva generación de Mercedes ofrecen 400 kilómetros de autonomía en 15 minutosInterior del concepto Clase CLA
Mercedes-Benz

Los modelos también admitirán 800 V para una alta eficiencia eléctrica y una carga rápida de hasta 400 kilómetros (248 millas) en 15 minutos. La empresa ha «maximizado la eficiencia al reducir las pérdidas en su sistema de propulsión eléctrica de 800 V. También presenta una química innovadora de celdas de batería y un alto nivel de integración que permite una excelente densidad de energía», dijo un comunicado de prensa .

Según la empresa, la nueva plataforma MMA también ayuda a reducir el CO₂ de la cadena de valor en más de un 40 por ciento.

El Concept CLA Class también cuenta con la nueva plataforma MB—OS de la marca para alimentar la Superpantalla MBUX, derivada del Vision EQXX que incorpora gráficos en tiempo real. Tanto el interior como el exterior del Concept CLA Class muestran el uso de materiales sostenibles. Esto incluye acero prácticamente libre de carbono, aluminio cuya huella de carbono se ha reducido, tapicería de cuero procesada y obtenida de manera sostenible y molduras hechas de papel.


Segmento en expansión
Su competidor BMW también presentó el «Vision Neue Klasse» en el Salón del Automóvil IAA, otro concept car eléctrico que demuestra los objetivos de la compañía en materia de vehículos eléctricos. La nueva arquitectura de los vehículos eléctricos de BMW se llama Neue Klasse. En 2025 se espera que entren en producción los primeros coches basados ​​en esta plataforma.

Las plataformas especializadas para vehículos eléctricos de Mercedes y BMW representan un cambio con respecto a diseños anteriores, en los que las baterías se agregarían a las versiones con motor de combustión o híbridas.

Se prevé que el mercado de vehículos eléctricos crecerá desde su valor estimado actual de 388.100 millones de dólares en 2023 a 951.900 millones de dólares en 2030, a una tasa compuesta anual del 13,7% durante el período previsto de 2023-2030.

Con los fabricantes de automóviles tradicionales de Alemania y empresas como Ford y GM totalmente comprometidos con la transición a los vehículos eléctricos, el segmento verá un salto masivo en tecnología y en la cantidad de nuevos modelos.

Jorge Carlos Fernández Francés

Musk quiere que Cybertruck se fabrique con la precisión de Lego

Elon Musk supuestamente pidió a los empleados de Tesla que se aseguraran de que la producción de Cybertruck alcanzara una tolerancia de micrones de un solo dígito, muy parecida a la que se hace con Lego o incluso con las latas de refresco. Esta instrucción fue enviada a los empleados en un correo electrónico, que luego se filtró, informó Electrek .

El Cybertruck es el vehículo eléctrico más esperado de Tesla, lleva varios años de retraso y se espera que comience a entregarse a finales de este trimestre. La forma icónica del vehículo despertó el interés de muchos compradores potenciales cuando se presentó en 2019.

Más de dos millones de personas se inscribieron para que el automóvil entrara en producción en 2021. No sabemos si el cronograma fue otro plazo ambicioso pero imposible establecido por Musk o si el vehículo enfrentó múltiples problemas antes de llegar a la línea de producción. Pero la buena noticia para los fanáticos de Tesla es que la fábrica de Giga en Texas lanzó el primer vehículo y se espera que muchos más lo sigan pronto.

¿Por qué Cybertruck tiene el aspecto real?

Musk exige estándares de alta calidad.
A principios de esta semana, el CEO de Tesla se tomó un tiempo para visitar las instalaciones de Giga Texas y probar el Cybertruck.

Probablemente inspeccionó el piso de producción y supervisó la calidad de los automóviles producidos en las instalaciones mientras la compañía se preparaba para ingresar oficialmente al modo de producción.

Después de la visita, Musk supuestamente envió un correo electrónico a los empleados, que luego se filtró. En el correo electrónico, Musk afirmó que el Cybertruck estaba hecho de metal y en su mayoría tenía bordes rectos antes de decir que las variaciones dimensionales sobresaldrían como un pulgar dolorido.

Por lo tanto, pidió a los empleados de Tesla que se aseguraran de que todas las piezas del vehículo debían fabricarse con una precisión inferior a 10 micrones, lo que se aplicaba incluso a los proveedores.


Musk añadió además en el correo electrónico que «todas las dimensiones de las piezas deben tener un tercer decimal en milímetros y las tolerancias deben especificarse en micrones de un solo dígito» y comparó la producción del vehículo con la de los populares bloques Lego, que son conocidos por su precisión.

El CEO de Tesla ha señalado que esto no era muy difícil ni costoso de lograr, ya que incluso las latas de refresco, que son baratas, lo logran con regularidad.

No es la primera vez
El correo electrónico de Musk a los empleados de su valiosa empresa es un recordatorio de las quejas sobre el acabado de los primeros modelos de coches Tesla. En 2018, Musk envió un correo electrónico similar después del lanzamiento del Modelo 3. En ese correo electrónico, Musk afirmó que las tolerancias de diseño del vehículo ya eran mejores que las de otros automóviles en el mercado, pero que la compañía necesitaba continuar hasta que fueran diez veces mejores.

En aquel entonces, Musk también señaló que los proveedores podrían no estar dispuestos a cumplir con tales solicitudes y que la empresa debería dejar de trabajar con ellos.


Si bien los autos Tesla han mejorado a lo largo de los años, no están tan cerca de las altas afirmaciones que hace Musk, dijo Electrek en su informe.

Los usuarios también señalaron que los límites exigentes que Musk exigía con el Cybertruck podrían superarse fácilmente con cambios menores en la temperatura ambiente. Es probable que los ingenieros de Tesla también lo sepan excepcionalmente bien. Entonces, la pregunta principal es cómo responden los empleados a dichos correos electrónicos. Ese es el correo electrónico que queremos que se filtre.

Para los aspirantes a Cybertruck, las entregas aún están en marcha, pero no les pedimos que se emocionen todavía. Hay una larga cola por delante.

Jorge Carlos Fernández Francés

Graduado del MIT cambia láseres por cámaras y mejora la visión del coche

Después de obtener su doctorado. Del Instituto de Tecnología de Massachusetts (MIT), Leaf Jiang pasó más de una década construyendo sistemas de alcance láser para el ejército para diversas aplicaciones de detección 3D. En su experiencia, Leaf descubrió que los sistemas de detección basados ​​en láser eran demasiado caros para implementarlos en vehículos autónomos que se estaban desarrollando para el futuro, y así nació NoDar.

Los sistemas de detección y alcance de luz (LiDAR) utilizan rayos láser para escanear su entorno y crear imágenes en 3D a partir de los datos obtenidos cuando las superficies reflejan la luz. A medida que las empresas buscan hacer que la conducción autónoma sea más común, dependen en gran medida de los sistemas LiDAR para obtener imágenes de las carreteras y ayudar a los automóviles a tomar decisiones críticas sobre si un objeto es una rama de un árbol o un ser humano.

El primer dron con triple cámara óptica del mundo ofrece capacidades avanzadas de obtención de imágenes

Cada sistema LiDAR no sólo puede costar decenas de miles de dólares, sino que además no es del todo preciso y es propenso a fallar. La startup de Leaf, NoDar, promete una alternativa mucho más barata basada en uno de los dispositivos electrónicos más omnipresentes: la cámara digital.

¿Cómo puede una cámara reemplazar al LiDAR?
La visión 3D basada en cámaras se ha intentado varias veces antes y ha fracasado estrepitosamente. A diferencia de LiDAR , un sistema basado en cámaras depende de la luz ambiental para crear imágenes. Los resultados de estas imágenes varían según la hora del día y, a menudo, son deficientes en condiciones de poca luz, como tiempo lluvioso o con niebla.

NoDar, sin embargo, afirma que la tecnología de las cámaras ha mejorado con los años. También ha desarrollado software propietario para obtener mejores resultados de las cámaras y garantizar que superen sin dudas a los sistemas LiDAR.


NoDar utiliza dos cámaras colocadas muy separadas en un vehículo para obtener vistas separadas de la carretera. Las dos vistas también le permiten triangular la ubicación de un objeto a la vista y determinar su distancia del vehículo. Este enfoque se ha utilizado anteriormente y requería una calibración precisa para ser exacto.

La startup de Leaf ofrece una solución de software que calibra automáticamente las cámaras y sincroniza sus marcos. La empresa ha patentado la tecnología para esta calibración y el algoritmo se puede ejecutar en tiempo real en los chips con los que están equipados los coches, por lo que no se requiere hardware adicional.

¿Qué tan bien funciona?
Para determinar el rendimiento de su tecnología, la startup realizó pruebas en una pista de aterrizaje remota en Maine, lejos de la contaminación lumínica . Se colocaron dos cámaras de 5,4 megapíxeles a casi 1,2 m (4 pies) de distancia y las imágenes obtenidas se compararon con un sistema LiDAR de alta gama.

NoDar descubrió que su sistema generaba 40 millones de puntos de datos por segundo a plena luz del día frente a 600.000 LiDAR, según un informe de IEEE Spectrum . El equipo también trabajó con una cámara de simulación de automóviles que podía recrear condiciones como lluvia y niebla para estas pruebas.

En condiciones de lluvias extremadamente intensas, el número de puntos de datos se redujo en un 30 por ciento, pero en el caso del sistema LiDAR fue del 60 por ciento. En condiciones limitadas de niebla, donde la visibilidad era de sólo 145 pies (45 m), el sistema basado en cámaras aún logró mediciones precisas para el 70 por ciento de la distancia. Por el contrario, las mediciones basadas en LiDAR tuvieron una precisión de sólo el 20 por ciento.


En condiciones nocturnas, que es la verdadera prueba para el sistema, NoDar aún superó a los sistemas LiDAR al poder detectar un trozo de madera de casi cinco pulgadas (12 cm) a más de 400 pies (130 m) de distancia. El LiDAR de alta gama solo pudo detectarlo cuando estaba a 50 m (164 pies) de distancia.

Leaf confía en poder ofrecer un sistema NoDar a una fracción del coste de un sistema LiDAR. Los expertos, sin embargo, señalaron que un sistema LiDAR proporciona una vista de 360 ​​grados del automóvil, mientras que NoDAR funciona solo en una dirección. Obtener una vista similar probablemente requeriría más cámaras y cálculos, lo que efectivamente podría aumentar el costo de dicho sistema.

El mes pasado, Interesting Engineering también informó que los investigadores estaban utilizando firmas de calor para una aplicación similar.

Jorge Carlos Fernández Francés

El primer hipercoche totalmente eléctrico de Lamborghini con más de 1.341 CV

De cara a un futuro más sostenible, el toro furioso ha puesto sus ojos en el camino de la electrificación. El fabricante italiano de automóviles Lamborghini finalmente presentó su primer automóvil totalmente eléctrico, Lanzador. El concepto de hipercoche propulsado por baterías de la marca es un Gran Turismo 2+2 de gran conducción con una postura agresiva y está previsto que entre en producción en 2028.

Lanzador forma parte de la estrategia Direzione Cor Tauri de Lamborghini anunciada en 2021, que pretende llevar la marca hacia la descarbonización y la electrificación. Con el nuevo modelo, la marca planea marcar el comienzo de un «nuevo segmento de automóviles, el Ultra GT, que está preparado para ofrecer a los clientes una experiencia de conducción nueva e incomparable, esencialmente Lamborghini, gracias a tecnologías innovadoras», dijo Stephan Winkelmann, presidente y director general de Automobili Lamborghini, en un comunicado .

El superdeportivo Lamborghini de 600.000 dólares se agota en medio de una desaceleración económica
Porsche aspira al coche más rápido y homologado para carretera con su concepto de hipercoche eléctrico Misson X
La linaza pronto podría destronar a la fibra de carbono en las carreras


Un potente SUV Coupé
El estilo del Lanzador es una mezcla de sus modelos Urus y Sian, y es justo describirlo mejor como un SUV cupé de alto nivel, un segmento que ha ido ganando popularidad recientemente. La altura del vehículo es de 1,5 metros (5 pies), mucho más baja que la de su hermano SUV. Al igual que el Urus, la gran distancia al suelo y los asientos para cuatro adultos probablemente hagan del Lanzador un coche muy práctico también para el uso diario.

Lamborghini se mantiene callado sobre las especificaciones técnicas y de rendimiento del tren motriz del Lanzador. Lo único que ha revelado es que tiene dos motores eléctricos, uno para cada eje, lo que permite la posibilidad de tracción total. Mientras que la potencia máxima del sistema supera el megavatio, es decir, 1.341 CV.

La aerodinámica del Lanzador se puede optimizar en términos de conducción y autonomía. La cantidad de resistencia del aire se puede cambiar para adaptarse a las preferencias de cada conductor. Utiliza los sistemas de aerodinámica activa de la marca, que se utilizan en la parte delantera y trasera para maximizar la efectividad aerodinámica en los distintos modos de conducción. «Esta tecnología permite que el automóvil regule el flujo de aire con precisión, aumentando la autonomía en el modo Urbano y aumentando la carga aerodinámica en el modo Performance».

La firma dice que el automóvil puede adaptarse perfectamente a cualquier superficie y configuración definida por el conductor gracias a su eje trasero orientable y suspensión neumática, fácilmente accesible a través de los controles del volante.

Los detalles sobre los interiores son escasos. Lamborghini dice que sigue su enfoque de diseño «Siéntete como un piloto» con los ocupantes delanteros alojados en un «entorno ergonómico, con un panel de control delgado y liviano que permite modificar activamente el comportamiento del automóvil mientras se conduce».

La firma también ha utilizado lana Merino y fibra de carbono regenerada , entre otros materiales ecológicos, para mostrar su vocación por minimizar su efecto medioambiental. Algunos componentes de plástico invisibles, como la espuma de los asientos deportivos, se fabrican a partir de fibras recicladas fabricadas mediante tecnología 3D.


Cambiar a vehículos eléctricos
El Lanzador sirve como un adelanto de lo que vendrá. El modelo es parte de su estrategia de electrificación de 1.900 millones de euros (2.000 millones de dólares) que Lamborghini se embarcó en 2021. Según su plan, inicialmente lanzaría versiones híbridas de gasolina y electricidad de todos los modelos de su cartera antes de lanzar un modelo totalmente eléctrico. en 2028. Está previsto que Revulto, una versión híbrida enchufable de su hipercoche Aventador, se lance en 2024.

«Lanzador representa un verdadero hito para Lamborghini , ya que la compañía continúa trabajando activamente para electrificar toda su gama de vehículos y lograr la descarbonización. El nuevo concept car es parte de una amplia estrategia para reducir las emisiones de CO2 y adoptar una visión más sostenible para el futuro.

Jorge Carlos Fernández Francés

Simulación de objetos de radar automotriz para validación

La homologación y validación de nuevos modelos de vehículos requiere hoy en día millones de kilómetros de prueba recorridos en diferentes condiciones ambientales, en diferentes tipos de carreteras en varios países del mundo.

Debido a la mayor complejidad de las funciones de conducción automatizada (AD) y de los sistemas avanzados de asistencia al conductor (ADAS), y a los nuevos desarrollos en la tecnología de radar, los esfuerzos de prueba se expanden muy rápidamente. Depender únicamente de las pruebas en carretera ya no es práctico.

El sistema de prueba de radar de Rohde & Schwarz abre un campo completamente nuevo de posibilidades para probar funciones ADAS y AD basadas en radar para garantizar el funcionamiento correcto en bancos de pruebas de hardware-in-the-loop (HiL) y de vehículo-in-the-loop (ViL). .

Además, las pruebas de escenarios de funciones de conducción autónoma en la vía pública pueden ser peligrosas y en condiciones que no son fácilmente reproducibles.

Como resultado, las pruebas de escenarios de hardware en el circuito (HiL) y vehículo en el circuito (ViL) de radares automotrices están ganando importancia.

Tus desafíos:

Verificación, validación, calibración u homologación de extremo a extremo de funciones AD/ADAS a nivel de componente y de vehículo completo

Reproducción de escenarios de tráfico complejos, simulación inalámbrica de objetos de radar automotriz

Garantizar que el equipo de prueba de generación de objetivos de radar sea escalable y tenga las especificaciones técnicas para cubrir el creciente número de objetivos y futuros escenarios complejos.
Cumplir con los requisitos de mayor complejidad de las pruebas de la simulación de objetivos ADAS mientras se minimizan los costos y se acelera el tiempo de comercialización

Funciones de estrategia en tiempo real:

Simulador de objetivos de radar automotriz para pruebas de escenarios de conducción que se pueden definir y ejecutar fácilmente con la mayor reproducibilidad
Simulaciones complejas de objetos de radar automotriz que incluyen múltiples sensores, por aire
Mayor precisión y repetibilidad gracias a conjuntos de antenas totalmente electrónicos
Totalmente escalable, que cubre todos los casos de uso, desde I+D hasta producción, y fácilmente actualizable para cubrir requisitos futuros.

Jorge Carlos Fernández Francés

Los ingenieros de F1 crean el controlador híbrido definitivo

En las carreras de Fórmula Uno (F1), el equipo ganador necesita salvar cada segundo que pueda para ser el primer auto en cruzar la línea de meta. Y si bien depende de los conductores tomar las mejores decisiones posibles cuando se trata de giros y cambios de marcha, corresponde a los ingenieros optimizar el vehículo en sí.

En un estudio publicado en la edición de julio de IEEE Transactions on Vehicular Technology , un equipo de ingenieros propuso un nuevo controlador para los autos de carreras de F1 que analiza las maniobras de los conductores durante una carrera y ayuda a optimizar el motor durante vueltas futuras en consecuencia.

«El estimador ‘adivinaría’ el comportamiento futuro del conductor y proporcionaría al controlador futuras solicitudes de energía».

Un factor que hace que la optimización del motor de F1 sea aún más desafiante es el hecho de que la Fédération Internationale de l’Automobile exige desde 2014 que todos los coches tengan un motor híbrido de combustión eléctrica. En este caso, el vehículo cuenta con un motor de combustión interna de seis cilindros de dimensiones reducidas que está apoyado por un turbocompresor eléctrico y un grupo motogenerador de calor (MGU-H). Este último componente ayuda a recuperar energía de fuentes de calor, como los gases de escape, y devuelve la energía al sistema del vehículo. Un segundo motor eléctrico está montado en el cigüeñal del motor, que proporciona un par adicional al acelerar y recupera energía cinética cuando el vehículo frena.

«La generación actual de coches de F1 son sistemas muy complejos», explica Marc Neumann, Ph.D. Candidato en el Instituto de Sistemas Dinámicos y Control de ETH Zurich . «El desafío de diseñar controladores para estos vehículos radica en la interacción entre los componentes térmicos y eléctricos de la unidad de potencia».


Por ello, su equipo buscó crear un controlador que optimice la coordinación entre los aspectos eléctricos y de combustión del vehículo híbrido. Es importante destacar que llevaron su diseño un paso más allá al permitirle tener en cuenta el comportamiento del conductor.

El quid de la cuestión es que incluso el mejor de los conductores puede estar cambiando de marcha varios milisegundos antes o después del tiempo óptimo. En estos casos, es posible que el sistema del vehículo no optimice ni recupere parte del exceso de energía cinética en el sistema.

El controlador de Neumann y sus colegas toma nota de estas discrepancias en el comportamiento del conductor en tiempo real y adapta en consecuencia las interacciones entre los componentes eléctricos y térmicos del motor híbrido en vueltas futuras. Mientras que los controladores convencionales suelen estar preprogramados, el suyo es adaptativo.

“Tuvimos que implementar un estimador que estimara trayectorias futuras. En particular, el calculador ‘adivinaría’ el comportamiento futuro del conductor y proporcionaría al controlador futuras solicitudes de potencia”, explica Neumann.

Por razones de confidencialidad, los investigadores no pueden revelar para qué competidor de F1 trabajan ni compartir resultados que comparen su controlador con otros. Sin embargo, en su estudio configuraron un modelo de simulación para comparar su controlador con el escenario óptimo donde todas las condiciones son perfectas.

A través de estas simulaciones, los investigadores muestran que su tecnología podría ayudar a un coche de carreras a completar una vuelta a la pista entre sólo 49 ms y 64 ms menos que la situación teórica óptima (donde el conductor realiza cada acción perfectamente), que consideran aceptable. «Además, demostramos que la mayor parte de esta suboptimidad se debe al componente de gestión de energía, o a la rapidez con la que deben eliminarse las desviaciones de energía, lo que sugiere que un ajuste [adicional] [de nuestro modelo] podría disminuir aún más la suboptimidad», explica Neumann.

A continuación, Neumann dice que su equipo planea continuar explorando formas de optimizar los autos de carreras de F1, pero con un enfoque más «global» que considere tanto las decisiones de hardware como de software que pueden influir en el comportamiento general del vehículo.